
DRAKON

The Human Revolution
in Understanding Programs

October 2011
Stepan Mitkin
stipan.mitkin@gmail.com

Page 1 of 33

A Graphic Language

DRAKON (Дракон) is a graphic language for explaining algorithms.

It is a tool for easy and fast understanding between human beings when they talk about

programs. DRAKON's slogan is “took a glance – got the idea”.

It Comes from Space

DRAKON was invented within the Russian space program for

programming the AI that controlled the Buran spacecraft. The Buran

developers soon realized that the main problem in building a large system

was the human factor and communication between humans. Explaining

an algorithm turned out to be much harder than designing and

implementing it. The Keldysh Institute for Applied Mathematics in

Moscow was given the task to address that problem. Their response was

the DRAKON language.

Understanding is Key To Software Process

Clear, easy to read programs and documentation are the bedrock of a good software process.

• When a program is easy to understand, errors inside it become visible before the

program runs. The value of seeing errors early cannot be overestimated. First, there is

no need to spend long hours on debugging and testing. Second, when an error

indicates a flaw in the design, that flaw has more chances to get fixed when

discovered shortly after the project start. As a result, better software is delivered

within a shorter time period.

• A large software project is nothing but a cloud of information being constantly grown

by many people. Each individual contribution must fit the existing environment, that

is why there is more reading from that cloud than adding to it. New requirements

must go along well with the old requirements, new code must work nicely with the

code that has already been there. Understanding what others have done is essential

for work in a large project. That is why people co-operate more efficiently if their

project is easy to understand.

Clarity means success, while obscurity means failure.

Page 2 of 33

Understanding Must be Made Easier

What is the problem with understanding?

1. Programs are getting more complex.

2. They are getting harder to understand.

3. Understanding is work.

4. Productivity of understanding is intolerably low.

Conclusion: understanding must be made easier.

How to Improve Understanding?

DRAKON's revolutionary way of making algorithms easy to understand is the combination

of mathematical strictness and human ergonomics.

One one hand, DRAKON is mathematically strict which means that:

1. It is precise and unambiguous.

2. It has been proven that DRAKON can express ANY algorithm.

On the other hand, mathematics alone is not enough and that is why DRAKON is so

centered around usability and ergonomics.

What is ergonomics? Ergonomics is the art of making exhausting and boring work easy and

comfortable. It is about making things convenient to use by human beings. Here is the

DRAKON approach to ergonomics:

1. DRAKON is simple.

2. DRAKON is a graphic language.

3. DRAKON's graphics notation is highly optimized.

Page 3 of 33

Why Graphics?

Text is the primary means of capturing algorithms at this time. Both requirements and code

are forms of text, and everybody seems to take the domination of text as a natural and

unavoidable fact. Diagrams are used occasionally and inconsistently. This situation is a real

problem:

1. The human eye and brain are very well optimized for visual information which

constitutes most of information received by man. We are bad at reading and good at

seeing pictures. In order to be productive, we must use our body and mind in the way

they are supposed to function.

2. An image is a more compact representation of information than a text. This is

especially true when a high level of detail is required.

3. Engineers switched from text to graphics long, long ago with a great success. They

have built the whole modern technological world using drawings and blueprints.

Why are software developers considered different?

The future belongs to graphic languages because they are better suited to human beings.

Fig 1. The simplest DRAKON diagram.

Page 4 of 33

How Does DRAKON Optimize Graphics?

Why need yet another graphic notation? What is so unique about DRAKON?

1. Elements on a DRAKON chart are arranged in a hierarchical way. You see the most

important things first.

2. DRAKON takes into account human visual habits and minimizes the effort required

to scan a diagram. Your eyes follow a natural and repeating pattern without the need

to jump around and look for things.

3. DRAKON's strict rules and guidelines make sure that the diagram does not turn into

clutter. Order is always guaranteed, the lines and arrows never become a cobweb.

Most Important Things First

The DRAKON diagram has several vertical sections called branches. The branches

represent a logical decomposition of the problem.

The first glance at the DRAKON diagram tells the summary of the diagram and answers the

Three Questions of the King:

1. What is the name of the problem?

2. How many parts does the problem have?

3. What are the names of the parts?

The Begin label contains the name of the diagram and answers the first question.

The number of branches answers the second questions. The names of the branches answer

the third question and tell about the main logical parts of the problem.

The branch names together with the Begin label are placed in the header of the diagram,

which ensures that the summary of the diagram can always be found at the same place.

Page 5 of 33

Fig 2. Branches and header in the DRAKON diagram

Branches

A branch represents a sequence of actions. The actions are recorded in the branch in the top-

down direction. This direction is very important in our world because gravity forces objects

to move down. This is why downward movement is accepted as “natural” by our eyes.

Rule: A branch has one entry and one or more exits.

The entry is a special icon at the top that holds the branch name. Branch names must be

unique within a diagram. The branch entry is the only point where execution of the branch

can start.

Branch exits are located at the bottom of the branch. There are two kinds of branch exits:

• An Address icon that shows the name of the next branch.

• The End icon that marks the end of the algorithm.

Page 6 of 33

Why branches?

Long algorithms are hard to understand because the human mind is not good at dealing with

too many objects at the same time. Dividing an algorithm into several conceptual parts helps

improve readability.

With the divide and conquer approach, a long and complex structure can be viewed at any

level of detail. Usually this is done by recursively splitting a flat list of actions into sub-

routines.

DRAKON adds a unique addition to that technique: with DRAKON branches, you can see

two levels of this subdivision on the same diagram, while a sub-routine only shows items

on one level.

Fig 3. Splitting a long algorithm into sub-routines.

Page 7 of 33

Fig 4. Using branches to split a long algorithm.

How Branches Work

Functioning of a DRAKON diagram can be visualized with a runner moving along the

wires:

1. The runner goes down through the leftmost branch.

2. Then it goes to the left edge and climbs up to the left top corner.

3. Then it slides to the right until it finds the branch pointed to by the Address icon of

the previous branch.

4. It goes down through that branch.

5. It finds the next branch like before.

Jumps between branches, when the runner moves from one branch directly to the middle of

another, are not allowed.

Page 8 of 33

Order of Branches

Branches on the DRAKON diagram are ordered from left to right according to their

sequence in time.

Rule: going to the right is going forward in time.

Following this rule ensures that the branch position in space reflects its position in time.

The Address icon at the bottom of a branch points to the next branch and that potentially

allows for any ordering of branches. But DRAKON considers legal only two cases when an

Address icon does not point at the next branch to the right:

1. When one or more branches must be skipped. This can only happen as a result of

evaluation of a conditional statement (like if or switch), we can't jump over branches

just for fun.

2. When some branch should be executed more than once. This is a special case of loop,

called the “branch loop”.

A diagram that follows the above guidelines is ergonomic because it is arranged in a

consistent and natural way, like columns of text in a newspaper.

Fig 5. The order of branches on a diagram.

Page 9 of 33

The Skewer

A skewer is a sharp metal stick that is used for roasting meat. Skewer illustrates the main

principle of arranging elements inside a branch:

1. The entry and the main exit of a branch are connected by a straight vertical line.

2. The icons that comprise the main path of a branch lie on that vertical line.

When this rule is met, the diagram becomes cleaner looking and better organized. In the

absence of a skewer, the branch looks broken and ugly.

Fig 6. Skewers.

The Main Route of a Branch

If a branch contains conditional icons like if and switch, there is more than one path through

it. In this case we could call one path as the main route and others as secondary routes.

The man route is the path that leads to the greatest success. In other words, it is the happy

path of the algorithm. It is the way everything is supposed to work.

It should be possible to find the main route of a branch with just a single glance. The main

route must be immediately noticeable.

Rule: The main route must lie on the skewer.

The exits of the if and switch icons in the branch should be swapped in such a way that the

main route follows the leftmost vertical of the branch.

Page 10 of 33

Fig 7. The main route must be straight and go on the skewer.

Order of Secondary Routes

A secondary route is any path in the algorithm besides the main route. Secondary routes are

placed to the right from the main route.

The rule of secondary routes: the further to the right – the worse it is.

This means that the further far away a route is from the main route, the less pleasant

situation it describes.

One of the reasons why DRAKON was created is that the traditional flowcharts are totally

horrible as far as ergonomics is concerned. They are extremely hard to figure out. On the

other hand, DRAKON diagrams ensure order and clarity by providing a consistent visual

structure. This structure is additional, “redundant” information about the algorithm, a

presentation layer that makes it easy to understand.

Page 11 of 33

What if all the paths are equally successful? Then we should come up with some other

ordering to sort the routes. For example:

• the further to the right – the more far away.

• the further to the right – the higher.

• the further to the right – the faster.

• the further to the right – the heavier.

• the further to the right – the more expensive.

The main idea here is to select a criterion which suites the situation and consistently apply it

to arrange the routes.

Fig 8. The rule of secondary routes in the tea spill example.

Page 12 of 33

The Main Route of The Diagram

A secondary route may either come back to its parent route or end the branch with its own

Address icon. Since there can be several secondary routes, the branch may have several

secondary exits. The main exit is the exit at the lower end of the skewer. The rule of

secondary routes applies to the exits of the branch as well.

The rule of secondary exits: the further an exit is to the right from the main exit, the worse.

This rule makes it possible to grasp the general idea of the algorithm with a single glance.

The main exits from the branches connect the main routes of the branches and form the

main route of the diagram. This way we can easily see the happy path of the whole

algorithm and leave the details for later.

Fig 9. The Main Route of the diagram.

Page 13 of 33

Many Entries, One End

A diagram can have more than one entry. Sometimes, we need to skip a few branches at the
beginning and proceed directly to the right part of the diagram. It is possible to do so by
placing an additional Begin icon over the branch that we want to start with (see Fig. 26).
A diagram, however, cannot have many End icons. There still can be early exits from the
algorithm, but they should be implemented as jumps to the last branch.

Rule: there can be only one exit.
Why have such a limitation?

• With exactly one end, the diagram has a clear structure: it goes from the “before”
state at the top-left to the “after” state at the bottom-right. The possibility to have
many entries contradicts this principle somewhat, but at least the entries can be easily
found – they are at the top.

• It becomes easy to trace the sequence of branches from both the beginning and the
end if here is only one end.

Fig 10. Only one exit is allowed.

Page 14 of 33

The If Icon

The If icon has one entry, but two exits. The exits are marked with labels yes and no.

• The central exit comes out of the bottom of the icon, the right exit comes out of its

right side.

• Placing an exit on the left side is not allowed.

• It does not matter which exit has the label yes, it could be either central or right.

• Use yes instead of “true”, no instead of “false”. Children learn yes and no at a very

early age, yes and no are intuitive.

Note that the If icon is a hexagon, not a diamond like its flowchart counterpart. The

hexagon shape saves vertical space on the diagram.

Improving Ergonomics

Swapping the central and the right paths that come out of the If icon is an important tuning

technique. It does not change the algorithm of the diagram, but may improve its ergonomics

by following the path ordering rule (the further to the right, the worse it is) and the main

route rule (the main route must lie on the skewer).

Fig 11. Using the If icon.

Page 15 of 33

Joinings

Another way to improve ergonomics is to eliminate duplication of icons and groups of

icons.

Rule: do not repeat yourself.

Copy-paste on the diagram is as bad as it is in the code. There are techniques to avoid

duplication: vertical and horizontal joining.

Fig 12. Horizontal joining.

At a horizontal joining, the vertical line goes down until it hits the horizontal line. The

execution flow in the horizontal line can go in either of two directions: to the left or to the

right. A horizontal joining is only allowed if the execution flow goes to the left on the

horizontal line. The rationale behind this is simple: the reader does not need to think which

way to go after hitting a horizontal line from above. It is always to the left.

Page 16 of 33

Fig 13. Illegal horizontal joinings.

Rule: after a horizontal joining the execution flow goes to the left.

Fig 14. Vertical joining.

A similar one-direction rule applies to vertical joinings. Hitting a line that goes up is not

Page 17 of 33

allowed.

Rule: after a vertical joining the execution flow goes down.

The explanation is also similar: the reader's eyes should not jump all over the whole

diagram in order to figure out whether the line goes up or down. It is always down.

Fig. 15. Illegal vertical joining.

No Line Intersections!!!

Traditional flowcharts have long been hated for their tendency to quickly turn into an

entangled cobweb of lines and arrows. A dense grid of connecting lines makes reading a

diagram harder than reading source code. This is why diagrams in general are often

neglected by programmers who prefer pseudocode for explaining algorithms.

Line intersections are the main source of clutter in diagrams.

Rule: line intersections and breaks are not allowed.

All types of line intersections are considered ergonomically harmful and therefore illegal. In

order to ensure clarity, DRAKON avoids unnecessary detail and visual noise.

The ban on intersections is a serious topological limitation. Does it prevent expressing

complex real-life algorithms? No. It has been mathematically proven that DRAKON can

express any possible algorithm without line intersections.

If there is a contradiction of rules on a particular diagram, we prioritize the rules in the

following order:

Page 18 of 33

1. Always follow the basic rules of DRAKON: no line intersection, no exits on the left

side of the If icon, etc.

2. Follow the main route rule.

3. Minimize the number of angles on connecting lines.

4. Minimize the number of vertical lines.

Although it might be tempting to reduce the number of elements on the diagram at the cost

of violating the ergonomics rules, it should never happen.

The Insertion Icon

Sub-routines in software perform two functions:

1. Code re-use within a single program. A sub-routine is a piece of code with a name

which can be called from several places of the program.

2. Logical algorithm decomposition. Even when some code is called from only one

place, it still might make sense to take it out into a sub-routine. The name of the sub-

routine will explain what that code does.

The Insertion icon is the DRAKON notation for calling another DRAKON diagram as a

sub-routine.

Fig 16. The Insertion icon.

Page 19 of 33

The For Loop

The For cycle is the cleanest form of loop. The For icon is similar to the for and foreach

keywords in other programming languages. The For icon is actually two icons: Begin For

and End For. The usual scenarios for using the For icon are:

1. iterating over a collection: foreach (var item in megaList)

2. counter-based loops: for (int i = 0; i < length; i++).

The code that runs several times is represented by the icons placed between the Begin For

and End For icons. Here are the rules of entering and exiting a For loop:

1. The Begin For icon is the only single entry into the loop body.

2. There can be several additional, early exits from the loop body.

Early exits come from the conditional icons: If and Switch.

Fig 17. The For loop.

Fig 18. The For loop can have only one entry but many exits.

Page 20 of 33

While, Do-Until and Hybrid Loops

Sometimes we need to perform an action many times as long as some condition holds. In

this case a simple loop based on the If icon is a better choice. When should we prefer an if

loop over a For loop?

• When there is no explicit iteration over a collection or using a counter.

• When there is a repeating pair of two clearly defined steps: an action and a check for

exit conditions.

The If icon can organize a loop in three ways:

1. Question – Action. This is similar to the while loop in programming languages.

2. Action – Question. This is similar to the do-until loop.

3. Action – Question – Action. This one is called the hybrid loop.

Note that a loop is the only situation when we direct a connecting line upwards. A line that

is pointing up is such a rare exception that DRAKON ends that line with an arrow. All

arrows inside a branch represent loops. All other lines do not have arrow heads because an

excessive use of arrows adds unnecessary graphics complexity.

Fig 19. Loops based on the If icon.

Page 21 of 33

Lines that go up are special in DRAGON and cannot carry icons on them.

Rule: Never put any icon on a line that goes up or sideways.

This is a very important DRAKON principle – the next icon is below the current point of

execution. Arrows just make the point of execution jump up above a certain icon.

Rule: Arrows never point to icons. Arrows point only to lines that go down.

This rule guarantees that for each icon, there is only one line that leads to it.

Fig 20. Wrong and right uses of the loop arrow.

Page 22 of 33

Nested Loops and Loops with Early Exits

Programming loops with text is a strong habit, but it is a harmful habit. Traditional text-

based ways of representing loops have several major drawbacks:

• The for and while programming constructs found in many languages force the loop

condition to return false in order to quit. This is an arbitrary limitation that makes the

programmer choose unintuitive identifiers like NotDone or introduce unnecessary

NOT operators.

• It is hard to guess which of the loops will stop when we are exiting a nested loop.

• If statements increase indentation too and add chaos to even simple loops.

Non of the above problems apply to DRAKON.

DRAKON makes the program flow evident for any combination of loops and if statements.

No matter how complex an algorithm is, it is always clear which icon will run next.

Fig 21. A nested loop with an early exit: DRAKON vs. pseudocode.

Page 23 of 33

Fig 22. Flowchart vs. DRAKON: the importance of ergonomics.

Page 24 of 33

Switch

The If icon works well when we have a question that can be answered “yes” or “no”. If the

question has other answers we should use the Switch construct. The Switch construct

consists of:

1. One Select icon that contains a question.

2. Two or more Case icons holding possible answers to that question.

When placing answers in the Case icons, we should adhere to the basic DRAKON rules:

• The main route should go on the skewer.

• The further to the right, the worse it is.

If one answer is not much better than the others, we should find a criterion for arranging the

Case paths in the ascending order from left to right.

The rightmost Case icon can be empty and have no value. This icon designates all other

values and is similar to the default clause in the switch statement in some languages.

Fig 23. The Switch construct.

Page 25 of 33

The Case icons must immediately follow the Select icon.

Rule: There should be no icons or joinings between the Select icon and the Case icons.

Fig 24. Switch errors.

The rightmost Case icons can lead to some place above the Case icon and form a cycle.

This construct is called the Switch loop.

Fig 25. The Switch loop.

Page 26 of 33

The Branch Loop

After a branch has finished working it transfers control to the next branch according to the

Address icon. Technically, the Address icon can hold the name of any branch on the

diagram, but the branch rule says that the next branch to call is the next branch to the right.

There are exceptions:

1. Some branches may be skipped when an If or a Switch construct decides so.

2. The next branch can be the same branch or some branch to the left if the intention is

to repeat some sequence of actions.

The latter case is called the branch loop. Just like any other loop, the branch loop can also

have several exits.

One of the typical uses of the branch loop is to build a nested loop by embedding some

other looping construct into a branch that is called repeatedly.

Fig 26. The branch loop.

The Address icon that causes the loop must have a special marking. That marking should

also be placed on the branch that is the start of the loop body.

Page 27 of 33

Logic Expressions

DRAKON offers two ways of representing logic expressions: textual and visual.

With the textual method, you write the whole expression inside the If icon, just like you do

in the conventional programming languages. This method is not recommended.

The visual way has two steps:

1. Put each elementary operand of a complex logic expression into an individual If icon.

2. Connect the If icons in a way that ensures the equivalent order of evaluation of

operands and end result.

Fig 27. Textual and visual logic formulas.

These visual formulas form easily recognizable patterns which are beneficial to use.

Rule: For AND, put the if icons on the skewer. For OR, arrange the if icons as stair steps.

The yes exits should be placed closer to the skewer whenever possible, while the no exits

should go to the right. Going the other way around is allowed but not recommended because

it breaks the patterns and misleads the reader.

Page 28 of 33

Fig 28. Do not break the visual logic patterns.

The textual way of recording logic expressions is hard to understand and debug because it

hides a big number of possible outcomes in a very short statement.

The so called short-circuit evaluation of logic expression adds more trouble to the problem.

Many programming languages use this technique. It skips evaluation of the right operand of

an expression when the outcome can be deduced from the left operand.

willBuy = LooksCool(gadget) and not TooExpensive(gadget)

In this example, the right operand (not TooExpensive(gadget)) does not need to be

calculated when the gadget does not look cool – we will not buy it anyway.

Short-circuit evaluation adds implicit invisible paths to the algorithm.

DRAKON has a significant advantage because it shows all the possible paths of execution

in an explicit and clear way.

Page 29 of 33

Fig 29. The advantages of the visual logic formulas.

Note that there is no need for the NOT operator with the visual way of displaying logic. All

the needed effects can be achieved by switching the yes and no exits from the If icons.

Page 30 of 33

Fig 30. DRAKON explains complex logic formulas in an easy way.

Low-Level DRAKON and Real-Time Operators

The language that has been described so far is the high-level version of DRAKON. It is

mostly oriented towards human readers and intended for documentation.

There is a more low-level version of DRAKON that has all the necessary details to be used

for building programs. This version is called DRAKON-2. Icons in DRAKON-2 contain

statements in a formal programming language like C++ or Java instead of free text.

Assignments and method calls are done in the usual way, but flow control is delegated to the

layout of the DRAKON diagram. During build time the diagram is transformed into a

source file and then compiled.

DRAKON-2 has the so called real-time operators that add support for timers, concurrency,

threading and input-output.

Page 31 of 33

Summary

1. DRAKON is aimed at fast and easy understanding.

2. DRAKON helps the reader see the most important things first.

3. DRAKON pays great attention to detail in order to ensure clarity.

4. DRAKON is the best known way to represent loops.

5. DRAKON is superior at explaining logic formulas.

6. DRAKON has real-time extensions for real programming.

Page 32 of 33

Sources and links

How to improve the work of your mind. V. Parondzhanov
http://drakon.pbworks.com/w/page/18205516/FrontPage

DRAKON. A short description. V. Parondzhanov.
http://narod.ru/disk/7290880000/0.%D0%94%D1%80%D0%B0%D0%BA%D0%BE%D0%BD
%D0%9E%D0%BF%D0%B8%D1%81%D0%B0%D0%BD
%D0%B8%D0%B5%D0%A0%D0%B5%D0%BA.rar.html

The history of DRAKON language.
http://www.transhumanism-russia.ru/content/view/331/116/

Buran and DRAKON programming language.
http://www.computerra.ru/readitorial/418507/

The History of Russian Shuttle (video).
http://video.mail.ru/mail/cherbatex1/12333/384.html

Buran spacecraft web site (in Russian and English).
http://buran.ru/

Page 33 of 33

http://drakon.pbworks.com/w/page/18205516/FrontPage
http://buran.ru/
http://video.mail.ru/mail/cherbatex1/12333/384.html
http://www.computerra.ru/readitorial/418507/
http://www.transhumanism-russia.ru/content/view/331/116/
http://narod.ru/disk/7290880000/0.%D0%94%D1%80%D0%B0%D0%BA%D0%BE%D0%BD%D0%9E%D0%BF%D0%B8%D1%81%D0%B0%D0%BD%D0%B8%D0%B5%D0%A0%D0%B5%D0%BA.rar.html
http://narod.ru/disk/7290880000/0.%D0%94%D1%80%D0%B0%D0%BA%D0%BE%D0%BD%D0%9E%D0%BF%D0%B8%D1%81%D0%B0%D0%BD%D0%B8%D0%B5%D0%A0%D0%B5%D0%BA.rar.html
http://narod.ru/disk/7290880000/0.%D0%94%D1%80%D0%B0%D0%BA%D0%BE%D0%BD%D0%9E%D0%BF%D0%B8%D1%81%D0%B0%D0%BD%D0%B8%D0%B5%D0%A0%D0%B5%D0%BA.rar.html

	A Graphic Language
	It Comes from Space
	Understanding is Key To Software Process
	Understanding Must be Made Easier
	How to Improve Understanding?
	Why Graphics?
	How Does DRAKON Optimize Graphics?
	Most Important Things First
	Branches
	Why branches?
	How Branches Work
	Order of Branches
	The Skewer
	The Main Route of a Branch
	Order of Secondary Routes
	The Main Route of The Diagram
	Many Entries, One End
	The If Icon
	Improving Ergonomics
	Joinings
	No Line Intersections!!!
	The Insertion Icon
	The For Loop
	While, Do-Until and Hybrid Loops
	Nested Loops and Loops with Early Exits
	Switch
	The Branch Loop
	Logic Expressions
	Low-Level DRAKON and Real-Time Operators
	Summary
	Sources and links

